nums.core.compute.numpy_compute module

class nums.core.compute.numpy_compute.ComputeCls[source]

Bases: nums.core.compute.compute_interface.ComputeImp

advanced_assign_block_along_axis(dst_arr, src_arr, ss, axis, dst_coord, src_coord)[source]
advanced_select_block_along_axis(dst_arr_or_args, src_arr, ss, dst_axis, src_axis, dst_coord, src_coord)[source]
arange(start, stop, step, dtype)[source]
arg_op(op_name, arr, block_slice, other_argoptima=None, other_optima=None)[source]
array_compare(func_name, a, b, args)[source]
astype(arr, dtype_str)[source]
bop(op, a1, a2, a1_T, a2_T, axes)[source]
bop_reduce(op, a1, a2, a1_T, a2_T)[source]
cholesky(arr)[source]
create_block(*src_arrs, src_params, dst_params, dst_shape, dst_shape_bc)[source]
diag(arr, offset)[source]
identity(value)[source]
inv(arr)[source]
logical_and(*bool_list)[source]
map_uop(op_name, arr, args, kwargs)[source]
new_block(op_name, grid_entry, grid_meta)[source]
percentiles_from_tdigest(q, *digests)[source]
permutation(rng_params, size)[source]
pivot_partition(arr, pivot, op)[source]

Return all elements in arr for which the comparsion to pivot is True.

qr(*arrays, mode='reduced', axis=None)[source]
random_block(rng_params, rfunc_name, rfunc_args, shape, dtype)[source]
reduce_axis(op_name, arr, axis, keepdims, transposed)[source]
reshape(arr, shape)[source]
select_median(arr)[source]

Find value in arr closest to median as part of quickselect algorithm.

shape_dtype(arr)[source]
size(arr)[source]
split(arr, indices_or_sections, axis, transposed)[source]
sum_reduce(*arrs)[source]
svd(arr)[source]
swapaxes(arr, axis1, axis2)[source]
tdigest_chunk(arr)[source]
touch(arr)[source]
transpose(arr)[source]
update_block(dst_arr, *src_arrs, src_params, dst_params)[source]
update_block_by_index(dst_arr, src_arr, index_pairs)[source]
weighted_median(*arr_and_weights)[source]

Find the weighted median of an array.

where(arr, x, y, block_slice_tuples)[source]
xlogy(arr_x, arr_y)[source]
class nums.core.compute.numpy_compute.RNG(seed=None, jump_index=0)[source]

Bases: nums.core.compute.compute_interface.RNGInterface

new_block_rng_params()[source]
nums.core.compute.numpy_compute.block_rng(seed, jump_index)[source]